Positive operators and the ergodic theorem
نویسندگان
چکیده
منابع مشابه
Positive Operators and an Inertia Theorem
In recent years there has been interest in a theorem on positive definite matrices known as Lyapunov's theorem. Several authors have proved generalizations of this theorem, (WIELANDT [29J, TAUSSKY [24J, [25J, [26J , OSTROWSKISCHNEIDER [20J, GIVENS [10J, CARLSON-SCHNEIDER [3J, CARLSON [4J) . Lyapunov's theorem and its generalizations have become known as inertia theorems. In this note we shall u...
متن کاملAn Ergodic Theorem for a Noncommutative Semigroup of Linear Operators
Introduction. The question of ergodicity of a semigroup of bounded linear operators on a Banach space has been reduced, by Alaoglu and Birkhoff [l],1 Day [2, 3], and Eberlein [4], to the study firstly of the ergodicity of the semigroup itself and secondly, of the ergodicity of each element of the Banach space with respect to this ergodic semigroup. In the case of a bounded and commutative semig...
متن کاملErgodic theorem, ergodic theory, and statistical mechanics.
This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundam...
متن کاملThe Ergodic Theorem
Measure-preserving systems arise in a variety of contexts, such as probability theory, information theory, and of course in the study of dynamical systems. However, ergodic theory originated from statistical mechanics. In this setting, T represents the evolution of the system through time. Given a measurable function f : X → R, the series of values f(x), f(Tx), f(T x)... are the values of a phy...
متن کاملKingman's Subadditive Ergodic Theorem Kingman's Subadditive Ergodic Theorem
A simple proof of Kingman’s subadditive ergodic theorem is developed from a point of view which is conceptually algorithmic and which does not rely on either a maximal inequality or a combinatorial Riesz lemma.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1978
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1978.76.215